For patients with cardiac arrhythmia, surgeons routinely perform a minimally invasive procedure to ablate the sections of the heart that cause unwanted electrical impulses. The physician inserts a catheter through a vein into the heart that locally generates heat to ablate the relevant sections. To navigate the catheter tip through the blood vessels with a high level of precision, the surgeon can bend the tip manually using a pull wire inside the catheter. However, the catheter can be moved in only two directions: to the left and to the right.
In cooperation with their EPFL colleagues, ETH Zurich researchers working under Brad Nelson, Professor of Robotics and Intelligent Systems, have now developed a catheter with a magnetic head. Rather than being steered manually, it is operated from a computer via an external magnetic field. This enables the front part of the catheter to be bent in any direction with the highest level of precision. “As a result, the new catheter can be steered through more complex blood vessels better than a conventional catheter,” says Christophe Chautems, a doctoral student in Nelson’s group. Since the magnetic catheter does not require a pull wire, it can be made much thinner. The scientists have thus developed the smallest ever steerable catheter.