Addressing the nexus
The network of interactions between water, energy, food and ecosystems – referred to by experts as the “water-energy-food (WEF) nexus” – often leads to wide-ranging disputes in the catchment areas of transboundary rivers. Large-scale infrastructure construction projects such as dams and irrigation schemes have caused political tensions between neighbouring states at various points in the past.
An international research team led by ETH Zurich has now developed a strategic toolkit that can help to defuse such conflicts over water use, through an objective analysis of stakeholder’s interests. In the EU’s Horizon 2020 project
DAFNE
, 14 research partners from Europe and Africa worked together to find approaches to a more equitable management of water resources.
“We wanted to show how it is possible to sustainably manage the nexus between water, energy, food and ecosystems, even in large and transboundary river basins with a wide range of users,” says Paolo Burlando, Professor of Hydrology and Water Resources Management at ETH Zurich.
Integrating and balancing different interests
While it is now recognised that watershed planning should take a holistic approach that respects the needs of all stakeholders, multidimensional decision-making problems with significant numbers of stakeholders make it difficult to negotiate generally accepted solutions.
“Conventional planning tools are usually overwhelmed with challenges such as these,” explains Burlando, who has led the DAFNE consortium for the past four years. This is why the project team developed a novel method to map and quantify trade-offs in the WEF nexus.
The approach is based on the principles of the participatory and integrated planning and management of water resources, which focuses on the role and interests of stakeholders. The DAFNE methodology is designed to engage stakeholders and find compromises and synergies in a joint approach. “The key is to find solutions that benefit everyone, take the environment into account and also make economic sense,” explains Burlando.
Enabling dialogue through models
DAFNE uses state-of-the-art modelling techniques and digital solutions to enable participatory planning. A strategic decision tool allows the social, economic and environmental consequences of interventions to be assessed in a quantitative approach, enabling users to identify viable development pathways. Stakeholder selected pathways are simulated in detail using a hydrological model driven by high-resolution climate scenarios, in order to accurately analyse the impact on the respective water resources. Additional sub-models can be used to model other aspects of the nexus. Finally, a visualisation tool helps to illustrate interrelationships and assess problems from various user perspectives.
“The models aim to facilitate continuous negotiation between stakeholders – which is a key element of the DAFNE approach,” says Senior Scientist Scott Sinclair, who co-developed the modelling approach.
Case studies with local stakeholders
The DAFNE project focused on two large river basins in East, and Southern Africa – the Omo-Turkana and Zambezi – where the researchers tested their methodology in two case studies. In both case studies, real stakeholders were involved in the development of the DAFNE approaches, working with them to test alternative operating modes for the power plants and irrigation schemes, to design more sustainable use scenarios for their catchment areas. They exchanged their different perspectives in simulated negotiations to illustrate the process.