These projects solely treat the individual patient. As the gene edits are not passed on to future generations the patients can still pass on the hereditary disease to their children. But if this does happen, these children are in a position to make their own decision regarding if and how they want to treat the disorder.
Great potential for therapies
Beta thalassemia and sickle cell anaemia are just two examples of hereditary diseases caused by a single defective gene. A total of over 7,000 such genetic diseases are known. In principle, they all have the potential to be cured using CRISPR genome editing. Numerous research projects are underway in this area, including ones aimed at curing muscular dystrophy, metabolic diseases that damage the liver, congenital blindness and severe disorders of the immune system. Researchers have also begun clinical trials using of CRISPR to fight some forms of cancer by altering the body’s own immune cells in such a way that they attack the tumour cells.
We’re living in a very exciting time for genetic medicine. Genetic diseases have been with humankind for millions of years, and their root cause has been untreatable this entire time. With CRISPR, genome editing has recently become relatively simple. This opens up opportunities for us to provide options for patients who otherwise have no options.
When considering the case of a rogue scientist like He Jiankui, we must be careful not to mix this up with completely different gene editing approaches that are proceeding carefully and will not be passed on to children.