"The movements performed by the microrobot take place within milliseconds", says Laura Heyderman, head of the Laboratory for Multiscale Materials Experiments at PSI and professor for Mesoscopic Systems at ETH Zurich. "But programming of the nanomagnets only takes a few nanoseconds. This makes it possible to program the different movements one after the other. This means that the tiny microbird can first flap its wings, then slip to the side and afterwards flap again. "If needed, the bird could also hover in between", says Heyderman.
Intelligent microrobots
This novel concept is an important step towards micro- and nanorobots that not only store information to give a particular action, but also can be reprogrammed to carry out different tasks. "It is conceivable that, in the future, an autonomous micromachine will navigate through human blood vessels and perform biomedical tasks such as killing cancer cells", explains Bradley Nelson, Institute of Robotics and Intelligent Systems at ETH Zurich. Other application areas are also conceivable, for example flexible microelectronics or microlenses that change their optical properties.
In addition, applications are possible in which the characteristics of surfaces change. "For example, they could be used to create surfaces that can either be wetted by water or repel water", says Jizhai Cui, an engineer and researcher in the Mesoscopic Systems Lab.
This text was first published as a
press release
by the
Paul Scherrer Institut PSI.