How a chunk of human brain survived intact for 2600 years
Nearly 2600 years ago, a man was beheaded near modern-day York, U.K.—for what reasons, we still don’t know—and his head was quickly buried in the clay-rich mud. When researchers found his skull in 2008, they were startled to find that his brain tissue, which normally rots rapidly after death, had survived for millennia—even maintaining features such as folds and grooves (above).
Now, researchers think they know why. Using several molecular techniques to examine the remaining tissue, the researchers figured out that two structural proteins—which act as the “skeletons” of neurons and astrocytes—were more tightly packed in the ancient brain. In a yearlong experiment, they found that these aggregated proteins were also more stable than those in modern-day brains. In fact, the ancient protein clumps may have helped preserve the structure of the soft tissue for ages , the researchers report today in the Journal of the Royal Society Interface .
Aggregated proteins are a hallmark of aging and brain diseases like Alzheimer’s. But the team didn’t find any protein clumps typical of those conditions in the ancient brain. The scientists still aren’t sure what made the proteins aggregate, but they suspect it could have something to do with the burial conditions, which appeared to take place as part of a ritual. In the meantime, the new findings could help researchers gather information from proteins of other ancient tissues from which DNA cannot be easily recovered.